3 standard reflections every 200

intensity decay: 1%

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

 $R_{\rm int} = 0.046$

reflections

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(2-Nitroanilino)benzoic acid

Xiao-Lin Zhu,* Lu Shi, Peng Jiang, Tian-Hao Zhu and Hong-Jun Zhu

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China Correspondence e-mail: zhuhjnjut@hotmail.com

Received 20 November 2011; accepted 12 December 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.057; wR factor = 0.158; data-to-parameter ratio = 12.8.

In the title compound, $C_{13}H_{10}N_2O_4$, the nitro N atom deviates by 0.031 (2) Å from the plane of the benzene ring to which it is attached. The aromatic rings are oriented at a dihedral angle of 50.6 (1)°. An intramolecular N-H···O hydrogen bond occurs. In the crystal, inversion dimers are formed by pairs of O-H···O interactions.

Related literature

For the use of the title compound as an intermediate in the synthesis pharmacologically important compounds, see: Kelleher *et al.* (2007). For the synthesis, see: Rewcastle *et al.* (1987). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $\begin{array}{l} C_{13}H_{10}N_2O_4\\ M_r = 258.23\\ \text{Monoclinic, } P2_1/c\\ a = 7.1840 \ (14) \ \text{\AA}\\ b = 21.546 \ (4) \ \text{\AA} \end{array}$

c = 7.9070 (16) Å $\beta = 101.62 (3)^{\circ}$ $V = 1198.8 (4) \text{ Å}^{3}$ Z = 4Mo K α radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 293 K

Data collection

Enraf–Nonius CAD-4	
diffractometer	
4704 measured reflections	
2209 independent reflections	
1437 reflections with $I > 2\sigma(I)$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ 172 parameters $wR(F^2) = 0.158$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.19$ e Å⁻³2209 reflections $\Delta \rho_{min} = -0.32$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1A···O3	0.86	2.02	2.636 (3)	128
$O1 - H1C \cdots O2^{i}$	0.82	1.82	2.636 (2)	176

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *SET4* (Enraf–Nonius, 1994); data reduction: *MolEN* (Harms & Wocadlo,1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2343).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Kelleher, J. M., Mc Auliffe, M. T., Moynihan, H. A. & Mullins, M. D. (2007). Arkivoc, xvi. 209–226.
- Rewcastle, G. W., Denny, W. A. & Baguley, B. C. (1987). J. Med. Chem. 30, 843-851.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, o213 [doi:10.1107/S1600536811053529]

2-(2-Nitroanilino)benzoic acid

X.-L. Zhu, L. Shi, P. Jiang, T.-H. Zhu and H.-J. Zhu

Comment

The title compound, 2-(2-nitrophenylamino)benzoic acid is an important intermediate for the synthesis of 10,11-dihydro-5-acetyl-dibenzo[b,e][1,4]diazepin-11-one (Kelleher *et al.*, 2007). The crystal structure of the title compound, (I), is reported herein.

The molecular structure of (I) is shown in Fig. 1, and the intermolecular O—H \cdots O hydrogen bond (Table 1) results in the formation of centrosymmetric carboxylic acid dimers. The bond lengths and angles are within normal ranges (Allen *et al.*, 1987).

In the molecule of the title compound, the rings are planar. The dihedral angle of the rings Cg1(C1-C6), Cg2(C8-C13) is: Cg1/Cg2 = 50.6 (1)°. The N atom is situated in the same plane as the phenyl ring to which it is attached.

In the crystal structure of the title compound, (I), intra- and intermolecular O—H…O and N—H…O hydrogen bonds are observed. Centrosymmetrical dimers are formed by the O—H…O interaction.

Experimental

The title compound, (I), was prepared by a literature method (Rewcastle *et al.*, 1987). Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.20 g, 0.8 mmol) in acetone (25 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement

H atoms were positioned geometrically and refined as riding groups, with O—H = 0.82 and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.2 for aromatic H, and x = 1.5 for other H.

Figures

Fig. 1. Molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. Packing diagram of (I). Hydrogen bonds are shown as dashed lines.

2-(2-Nitroanilino)benzoic acid

Crystal data

C₁₃H₁₀N₂O₄ $M_r = 258.23$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.1840 (14) Å b = 21.546 (4) Å c = 7.9070 (16) Å $\beta = 101.62$ (3)° V = 1198.8 (4) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.046$
Radiation source: line-locus sealed tube	$\theta_{max} = 23.4$, $\theta_{min} = 1.9$
graphite	$h = 0 \rightarrow 8$
$\omega/2\theta$ scans	$k = -25 \rightarrow 25$
4704 measured reflections	$l = -9 \rightarrow 9$
2209 independent reflections	3 standard reflections every 200 reflections
1437 reflections with $I > 2\sigma(I)$	intensity decay: 1%

F(000) = 536

 $\theta = 10 - 13^{\circ}$

T = 293 K

 $\mu = 0.11 \text{ mm}^{-1}$

Block, yellow

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

 $D_{\rm x} = 1.431 {\rm Mg m}^{-3}$

Melting point: 490 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 25 reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.057$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.158$	H-atom parameters constrained
<i>S</i> = 1.01	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.092P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2209 reflections	$(\Delta/\sigma)_{max} < 0.001$
172 parameters	$\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
N1	0.3630 (3)	0.63169 (9)	0.8669 (2)	0.0512 (6)
H1A	0.2975	0.6083	0.7889	0.061*
01	0.6904 (2)	0.49333 (8)	0.6877 (2)	0.0644 (6)
H1C	0.6478	0.4799	0.5906	0.097*
C1	0.5770 (4)	0.62113 (12)	1.1447 (3)	0.0525 (6)
H1B	0.5117	0.6527	1.1882	0.063*
O2	0.4326 (2)	0.55260 (8)	0.6238 (2)	0.0565 (5)
N2	-0.0301 (3)	0.66483 (11)	0.7232 (3)	0.0617 (6)
C2	0.7255 (4)	0.59204 (13)	1.2522 (3)	0.0584 (7)
H2A	0.7594	0.6040	1.3673	0.070*
O3	0.0167 (3)	0.61293 (10)	0.6871 (3)	0.0755 (6)
C3	0.8248 (4)	0.54511 (14)	1.1905 (3)	0.0604 (7)
H3A	0.9260	0.5257	1.2629	0.073*
C4	0.7721 (3)	0.52775 (12)	1.0218 (3)	0.0550 (7)
H4A	0.8376	0.4957	0.9809	0.066*
O4	-0.1970 (3)	0.68049 (12)	0.6926 (4)	0.1088 (9)
C5	0.6226 (3)	0.55667 (10)	0.9083 (3)	0.0437 (6)
C6	0.5225 (3)	0.60428 (11)	0.9718 (3)	0.0447 (6)
C7	0.5730 (3)	0.53451 (11)	0.7287 (3)	0.0469 (6)
C8	0.2996 (3)	0.69134 (11)	0.8744 (3)	0.0428 (6)
C9	0.1125 (3)	0.70950 (11)	0.8017 (3)	0.0461 (6)
C10	0.0547 (4)	0.77113 (13)	0.8017 (3)	0.0599 (7)
H10A	-0.0698	0.7817	0.7519	0.072*
C11	0.1794 (4)	0.81632 (13)	0.8742 (4)	0.0618 (7)
H11A	0.1414	0.8576	0.8723	0.074*
C12	0.3632 (4)	0.79945 (11)	0.9505 (3)	0.0537 (7)
H12A	0.4478	0.8296	1.0035	0.064*
C13	0.4222 (3)	0.73919 (11)	0.9492 (3)	0.0492 (6)
H13A	0.5473	0.7295	0.9993	0.059*

Fractional	atomic coo	rdinatos and	isotropic	ora	anivalant	isotronia	c disi	nlacomont	naramators	1 %2)
ггасионаи		rainaies ana	isotropic	orec	juivaieni	isoiropic	c aisp	nacemeni	parameters ([A]	/

Atomic displacement parameters	$(Å^2)$
--------------------------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0457 (12)	0.0446 (12)	0.0561 (13)	0.0086 (10)	-0.0068 (9)	-0.0118 (9)
01	0.0490 (11)	0.0629 (12)	0.0772 (13)	0.0150 (9)	0.0031 (9)	-0.0213 (9)
C1	0.0485 (14)	0.0528 (15)	0.0545 (15)	0.0053 (12)	0.0068 (11)	-0.0022 (12)
O2	0.0558 (11)	0.0512 (11)	0.0580 (10)	0.0111 (9)	0.0009 (8)	-0.0077 (8)
N2	0.0439 (13)	0.0625 (16)	0.0708 (15)	0.0036 (11)	-0.0069 (11)	0.0035 (12)
C2	0.0530 (15)	0.0641 (17)	0.0522 (15)	-0.0082 (14)	-0.0036 (12)	0.0016 (13)

supplementary materials

O3	0.0606 (13)	0.0603 (13)	0.0932 (15)	-0.0053 (10)	-0.0141 (10)	-0.0106 (11)
C3	0.0407 (14)	0.0642 (18)	0.0697 (18)	0.0035 (12)	-0.0049 (13)	0.0077 (14)
C4	0.0385 (13)	0.0537 (16)	0.0705 (18)	0.0056 (12)	0.0051 (12)	0.0014 (12)
O4	0.0413 (12)	0.099 (2)	0.171 (3)	0.0063 (12)	-0.0146 (14)	-0.0119 (16)
C5	0.0347 (12)	0.0401 (13)	0.0557 (14)	-0.0018 (10)	0.0076 (10)	0.0007 (10)
C6	0.0358 (12)	0.0447 (14)	0.0507 (14)	0.0008 (10)	0.0016 (10)	0.0023 (10)
C7	0.0405 (13)	0.0360 (13)	0.0637 (16)	-0.0013 (11)	0.0095 (12)	-0.0001 (11)
C8	0.0408 (13)	0.0457 (14)	0.0407 (12)	0.0064 (10)	0.0053 (10)	-0.0035 (10)
C9	0.0399 (13)	0.0509 (15)	0.0445 (13)	0.0042 (11)	0.0013 (10)	-0.0017 (11)
C10	0.0501 (15)	0.0627 (18)	0.0640 (17)	0.0177 (14)	0.0043 (13)	0.0021 (13)
C11	0.0689 (19)	0.0462 (16)	0.0692 (18)	0.0145 (14)	0.0113 (14)	-0.0005 (13)
C12	0.0631 (16)	0.0470 (15)	0.0495 (14)	-0.0038 (13)	0.0081 (12)	-0.0047 (11)
C13	0.0434 (14)	0.0513 (16)	0.0494 (14)	0.0011 (11)	0.0013 (11)	-0.0036 (11)
C13	0.0434 (14)	0.0513 (16)	0.0494 (14)	0.0011 (11)	0.0013 (11)	-0.0036 (1

Geometric parameters (Å, °)

N1—C8	1.369 (3)	С3—НЗА	0.9300
N1—C6	1.402 (3)	C4—C5	1.399 (3)
N1—H1A	0.8600	C4—H4A	0.9300
O1—C7	1.309 (3)	C5—C6	1.402 (3)
O1—H1C	0.8200	С5—С7	1.472 (3)
C1—C2	1.374 (3)	C8—C13	1.407 (3)
C1—C6	1.392 (3)	C8—C9	1.407 (3)
C1—H1B	0.9300	C9—C10	1.391 (3)
O2—C7	1.233 (3)	C10-C11	1.368 (4)
N2—O3	1.218 (3)	C10—H10A	0.9300
N2—O4	1.222 (3)	C11—C12	1.385 (4)
N2—C9	1.451 (3)	C11—H11A	0.9300
C2—C3	1.382 (4)	C12—C13	1.366 (3)
C2—H2A	0.9300	C12—H12A	0.9300
C3—C4	1.363 (3)	C13—H13A	0.9300
C8—N1—C6	127.5 (2)	C1—C6—C5	118.6 (2)
C8—N1—H1A	116.2	N1—C6—C5	120.9 (2)
C6—N1—H1A	116.2	O2—C7—O1	121.9 (2)
C7—O1—H1C	109.5	O2—C7—C5	123.5 (2)
C2—C1—C6	121.2 (2)	O1—C7—C5	114.6 (2)
C2—C1—H1B	119.4	N1—C8—C13	121.4 (2)
C6—C1—H1B	119.4	N1—C8—C9	122.9 (2)
O3—N2—O4	120.9 (2)	C13—C8—C9	115.7 (2)
O3—N2—C9	120.3 (2)	C10—C9—C8	121.7 (2)
O4—N2—C9	118.8 (2)	C10—C9—N2	116.6 (2)
C1—C2—C3	120.5 (2)	C8—C9—N2	121.6 (2)
C1—C2—H2A	119.8	C11—C10—C9	120.6 (2)
С3—С2—Н2А	119.8	C11-C10-H10A	119.7
C4—C3—C2	119.0 (2)	C9—C10—H10A	119.7
С4—С3—Н3А	120.5	C10-C11-C12	118.8 (2)
С2—С3—НЗА	120.5	C10—C11—H11A	120.6
C3—C4—C5	122.1 (2)	C12—C11—H11A	120.6
C3—C4—H4A	119.0	C13—C12—C11	121.0 (2)

С5—С4—Н4А	119.0	C13-C12-H12A	119.5
C4—C5—C6	118.6 (2)	C11—C12—H12A	119.5
C4—C5—C7	118.7 (2)	C12—C13—C8	122.1 (2)
C6—C5—C7	122.7 (2)	С12—С13—Н13А	119.0
C1—C6—N1	120.3 (2)	C8—C13—H13A	119.0
C6—C1—C2—C3	0.0 (4)	C6—N1—C8—C13	22.6 (4)
C1—C2—C3—C4	-0.6 (4)	C6—N1—C8—C9	-160.5 (2)
C2—C3—C4—C5	1.1 (4)	N1-C8-C9-C10	-176.0 (2)
C3—C4—C5—C6	-1.1 (4)	C13—C8—C9—C10	1.1 (3)
C3—C4—C5—C7	-179.1 (2)	N1-C8-C9-N2	4.1 (4)
C2-C1-C6-N1	175.9 (2)	C13—C8—C9—N2	-178.8 (2)
C2—C1—C6—C5	0.0 (4)	O3—N2—C9—C10	165.3 (2)
C8—N1—C6—C1	34.3 (4)	O4—N2—C9—C10	-14.0 (4)
C8—N1—C6—C5	-149.9 (2)	O3—N2—C9—C8	-14.8 (4)
C4—C5—C6—C1	0.5 (3)	O4—N2—C9—C8	165.9 (3)
C7—C5—C6—C1	178.5 (2)	C8—C9—C10—C11	-0.4 (4)
C4—C5—C6—N1	-175.3 (2)	N2-C9-C10-C11	179.5 (2)
C7—C5—C6—N1	2.6 (4)	C9-C10-C11-C12	-1.2 (4)
C4—C5—C7—O2	172.6 (2)	C10-C11-C12-C13	2.1 (4)
C6—C5—C7—O2	-5.4 (4)	C11-C12-C13-C8	-1.4 (4)
C4—C5—C7—O1	-7.2 (3)	N1-C8-C13-C12	176.9 (2)
C6—C5—C7—O1	174.8 (2)	C9—C8—C13—C12	-0.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1A···O3	0.86	2.02	2.636 (3)	128.
O1—H1C···O2 ⁱ	0.82	1.82	2.636 (2)	176.
Symmetry codes: (i) $-x+1, -y+1, -z+1$.				

Fig. 2